Bioeconomy and its trade-offs towards meeting the SDGs and the Paris Agreement INSA Toulouse November 19, 2019

Welcome

Lorie Hamelin, Ph.D Senior Researcher, PI and laureate of the Make Our Planet Great Again call

@hamelinlab

hamelin@insa-toulouse.fr

Financial support from:

Metaprogramme GloFoods of

- Welcome and context for this event
- Audience: students, I want to hear your voice!
- Dialogue: don't be shy & make my convenor job easier
- Programme
- Recording All slides and videos will be uploaded on the event website
- Wifi: Behind your badge

Programme (1/2)

- 9.00 9.30 Welcome word & The Cambioscop project Carbon Management and bioresources strategies for scoping the transition towards low fossil carbon, <u>Lorie Hamelin</u>, INSA-Toulouse
- 9.30 10.30 Sustainably feeding 10B people in a warming World, <u>Paul West</u>, University of Minnesota
- 10.30 11.00 Coffee break in the Amphitheater
- 11.00 12.00 Bioeconomy: insights from GBEP, IEA Bioenergy and how the Sustainable Development Goals can guide the development of bioeconomy, <u>Uwe Fritsche</u>, IINAS
- 12.00 12.30 The 4 per mille initiative status of the study, <u>Eric Ceschia</u>, CESBIO
- 12.30 13.00 Inter-linkages between the Bioeconomy concept and the SDGs: Insights from the European Union and French cases, <u>Tevecia Ronzon</u>, JRC
- 13.00 14.00 Lunch at library hall

Programme (2/2)

- 14.00 15.00 Bioeconomy and the role of hydrogen, <u>Brian Vad Mathiesen</u> (remote presentation),
 Aalborg University
- 15.00 16.00 Key messages and recommendations of the IPCC SRCCL report and of the French High Climate Council (HCC), <u>Jean-François Soussana</u>, IPCC author, INRA vice-president and member of the French High Council for Climate (remote presentation)
- 16.00 16.30 The current bioeconomy status in France, <u>Yvon Le Hénaff</u>, President, IAR, the French Bioeconomy Cluster
- 16.30 17.00 Coffee Break
- 17.00 17.30 Bioeconomy is also about fertilizers, insights from new research, <u>Davide Tonini</u>, JRC
- 17.30 18.00 Bio-based materials and their environmental trade-offs: summarizing 10 years of research, <u>Li Shen</u>, Utrecht University
- 18.00 18.20 Green biorefinery as the tool for disruption of Northwestern European agriculture, <u>Uffe Jorgensen</u>, Aarhus University
- 18.20 18.30 Take home messages, <u>Lorie Hamelin</u> and audience

Cambioscop

Lorie Hamelin, Ph.D Senior Researcher, PI and laureate of the Make Our Planet Great Again call

@hamelinlab

hamelin@insa-toulouse.fr

Toulouse, Nov.19th, 2019

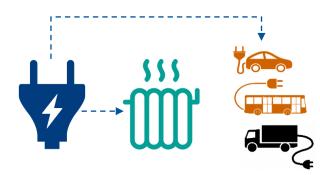
How it started?

Science Magazine. Dec 2017.

- 42 French laureates (18 + 14 + 12; 2 declined)
- France: Many spin-offs
- 13 German laureates

Carbon management & Bioresources strategies for scoping the transition towards low fossil carbon

2018 - 2023


Why?

Let's not get confuse in the terms

- Where can we get the C from?
- Decarbonization?: Carbon is not daemon and we need it
- Not about C, but about fossil C

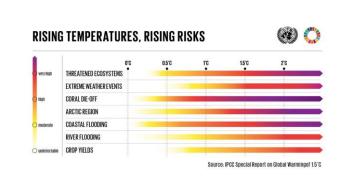
Postponing C-releases in the atmosphere

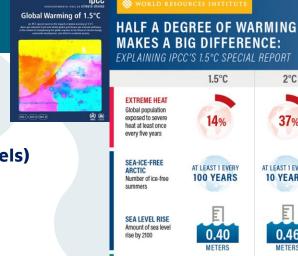
-Emergency to stabilize global mean annual surface temperature

- Limiting warming to 1.5°C requires:
 - Reducing GHGs by 45% (40-60%) by ~2030 (vs 2010 levels) ... and to ZERO by ~2050 (2045-2055)

- Limiting warming to below 2°C requires:
 - Reducing GHGs 20% (10-30%) by ~2030 (vs. 2010 level) ... and to ZERO by ~2075 (2065-2080)

Reduction in maize


harvests in tropics


CORAL REEFS

coral reefs

Further decline in

Decline in marine

Amount of sea level

SPECIES LOSS: VERTEBRATES least half of their rang

SPECIES LOSS: Plants that lose at

SPECIES LOSS:

Insects that lose at

least half of their range

Amount of Earth's land

area where ecosystems

will shift to a new biome

Amount of Arctic permafrost that

will thaw

INSECTS

least half of their range

10x

WORSE

.06M

WORSE

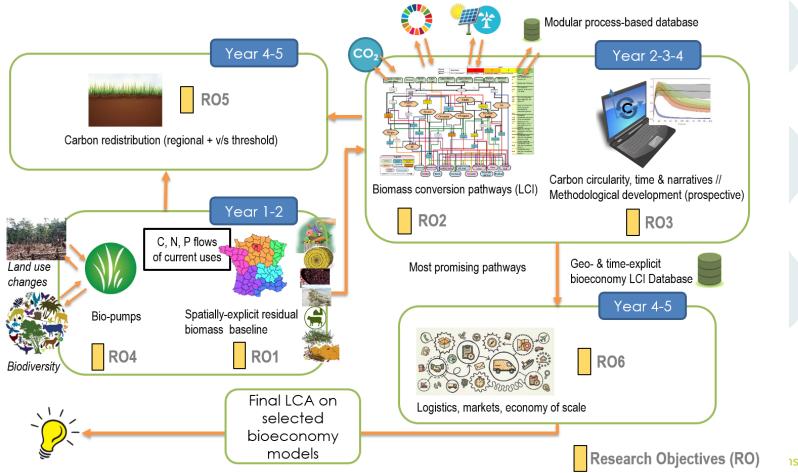
WORLD RESOURCES INSTITUTI

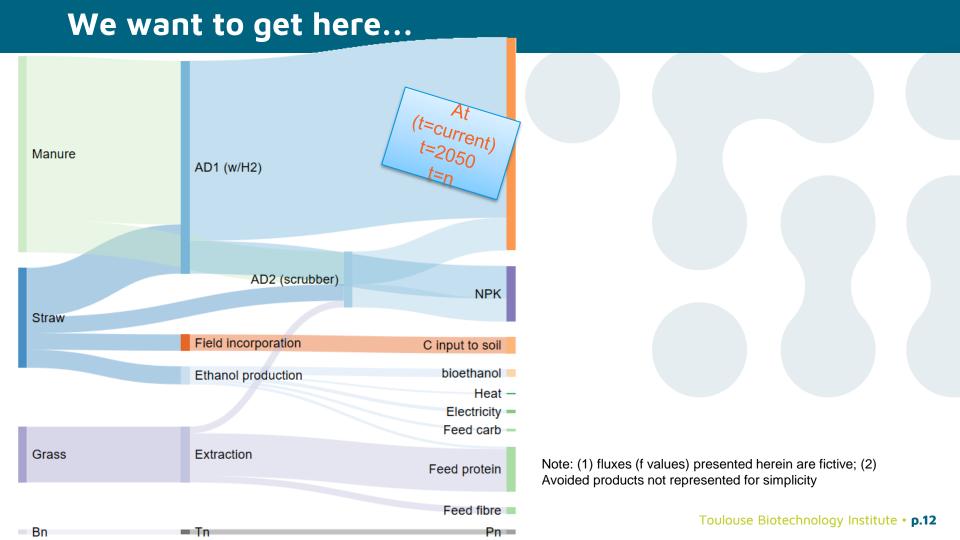
100 YEARS

2.3x

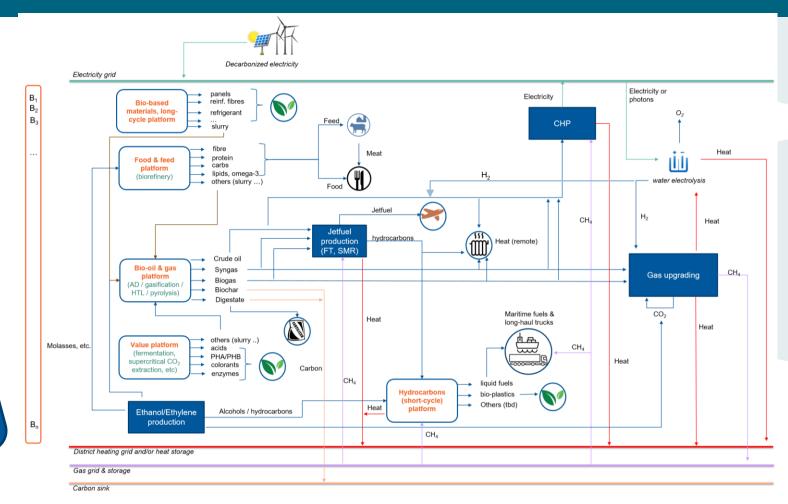
WORSE

29%

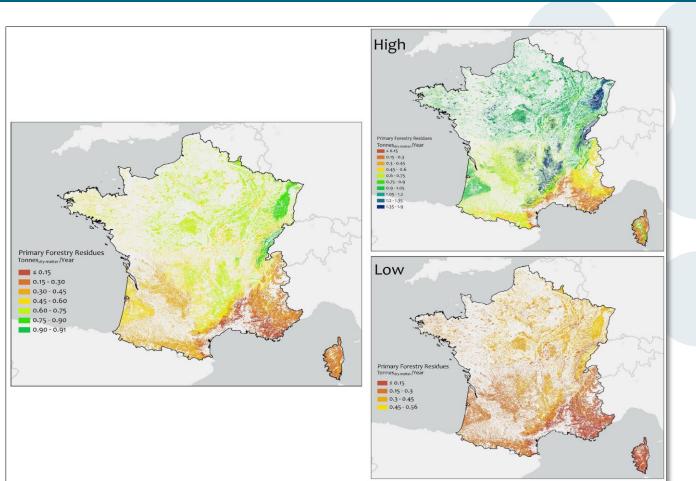

WORSE



Cambioscop in a nutshell



Six Research objectives


Without considering biomass in isolation

Of course, not only about C (nor CO₂)

RO1 – Spatial inventory & baseline LCA

Shivesh Karan, Postdoc

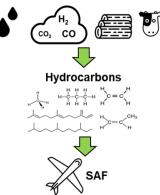
Straw & crop residues

Garden & park waste

household

Unused meadows

Industrial (selected streams)


Sewage sludge

Logging residues

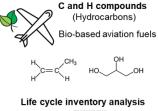
RO2/bio - oil & gas module

 $\mathbf{C},\,\mathbf{H},\,\mathbf{O},\,\mathbf{N},\,\mathbf{P}$ material compositions

STAGE 2

- Building the life cycle inventory (LCI) of RAF technologies and upscaling (if needed)
- Establishing the input-output algorithms for selected technologies based on the input feedstock

PAPER 2

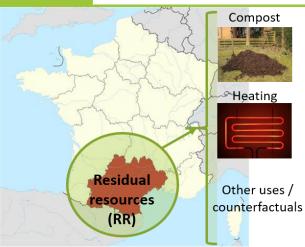


Pimchanok Su-Ungkavatin, PhD Student

STAGE 1

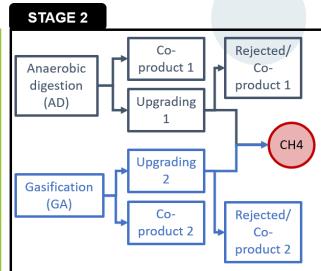
- Review the renewable aviation fuels (RAF) production conversion technologies
- Screening the involving technologies with the input/output products also the co-products generation

PAPER 1



STAGE 3

- The optimal use of co-products generated in the first stage (strategic LCAs for RAF) (PAPER 3)
- Studying the other uses of bio-crude oil and bio-based gas (PAPER 4)


RO2 / Bio - oil & gas module

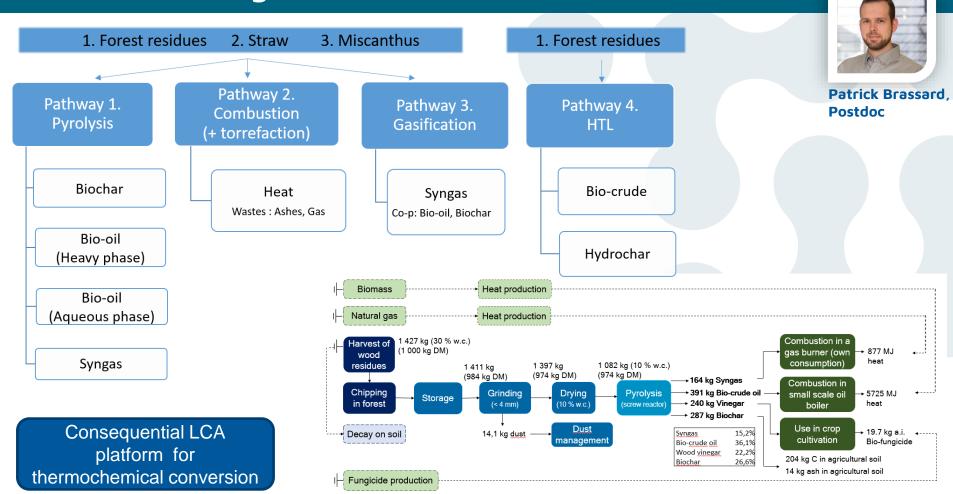
Identification of:

- Residual resources (RR) available in Occitanie region based on technical reports
- Current uses of RR
- Effects of diverting the RR from their current use/function to biobased gas production (counterfactual)

Analysis of the bio-based gas production (focus on CH4):

- Technology pathway (anaerobic digestion, AD, and/or gasification, GA)
- Technology upgrading for CH4 maximization
- Management of co-products and rejected

STAGE 3

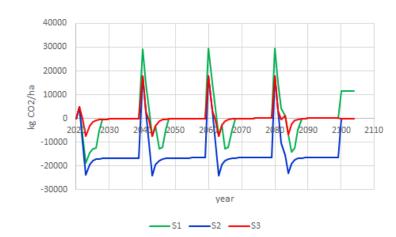

Lodato

Determination of the two hypotheses based on the regional gas demand (current and future):

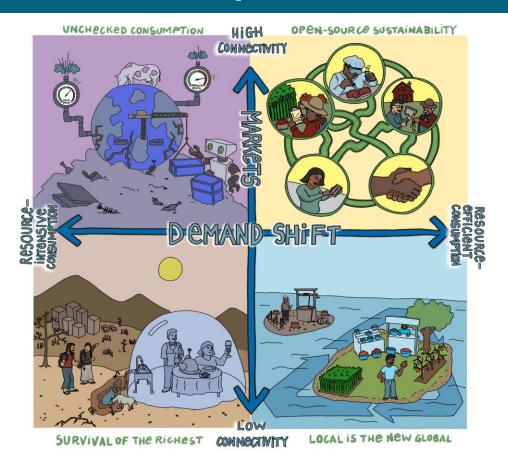
- The supply of bio-based gas > regional gas demand
- The supply of bio-based gas < regional gas demand

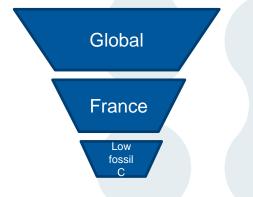
RO2 / Bio- oil & gas module

RO4 -Biopumps



Zhou Shen

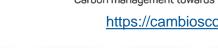




RO3 – Prospective assessments

Seung-Hye Lee

Source: World Economic Forum, 2017


Thanks for your attention

Carbon management towards low fossil carbon use

https://cambioscop.cnrs.fr/

Lorie Hamelin.

Shivesh Karan, **Postdoc**

Seung-Hye Lee, PhD Student

PhD Student

Pimchanok Su-Ungkavartin, PhD Student

Patrick Brassard. Postdoc, FRQNT fellow

Zhou Shen, PhD student

Occitanie

PhD students associated to Cambioscop

Concetta Lodato, DTU

Dominika Teigiserova, AU

Alejandra Gomez Campos, INP

Ligia Barna, Professor

Interface system assessment

/ Process engineering

Aras Ahmadi, **Associate** Professor

