

GO-GRASS

Green biorefinery as the tool for disruption of Northwestern European agriculture

Senior Scientist Uffe Jørgensen, Department of Agroecology Head of Aarhus University Centre for Circular Bioeconomy (www.cbio.au.dk)

Northwestern European agriculture is challenged

Productivity & competitiveness

- Biomass for food, feed, material and energy
- Stagnating yields
- Large import of protein feed

Environment

- High nutrient leaching (Nitrate and Water Framework Directives)
- High pesticide use
- Soil and wind erosion
- Agriculture must contribute to EU climate goals (EU climate policy)

Time to look for radical innovation instead of just incremental

Agriculture is locked-in by highly specialised cropping system technology and network actors

It seems hard to increase yields (sustainably) in existing crops in Europe

There are strong drivers for change - e.g. N emissions to water from agricultural land (Englund et al., 2019)

Strategic perennialization

Example

Fields can look this different in autumn – we decide

Biomass production can be doubled and nitrate leaching halved

Manevski et al., 2017; 2018

Other environmental benefits from conversion of annual crops to grass

- Reduced soil erosion
- Reduced GHG emission (0.5-3.5 ton CO₂-equiv/ha)
- Reduced pesticide use (by factor 40-50)

So, what to do with all that grass?

Crude protein yield higher in grasses than in other crops

Solati, Z, Manevski, K, Jørgensen, U, Labouriau, R, Shahbazi, S & Lærke, PE 2018. Industrial Crops and Products 115, 214-226.

Colours A radical new crop production paradigm can be un-locked by **Flavors** Medicin green biorefineries Other chemicals High-value components Oil Harvest **Fuels** Pretreatm. **Bio-refinery Syngas** Chemicals Storage Materials Transport Fibres Lignin Residual Soil conditioner Food Feed Fertiliser Rest Reactor Org. waste **Biogas Syngas**

Feeding experiment with green protein to pigs, cows, broilers & egg layers

Business evaluation of decentralized green biorefineries in Denmark

Economic assumptions:

Biorefinery CAPEX : 3.36 mio EUR

Depreciation time: 15 year

5% Interest rate , 5% Maintenance

Grass price

Organic: 0.15 EUR/kg

Conventional: 0.13 EUR/kg

Protein price (soya)

Organic: 0.67 EUR/kg

Conventional: 0.34 EUR/kg

Fiber pulp price

• Identical to grass price

 Residue juice is not given any cost or value - It is used for internal energy production at the biogas plant.

Economy		
	Scenario	
	Organic	Conventional
	Mio. EUR	Mio. EUR
Income		
Protein concentrate +	4.70	3.25
Fibre		
Expenses		
Grass	3.33	2.90
Energy and salary	0.19	0.19
Maintenance	0.17	0.17
Depreciation and	0.32	0.32
interest		
Result	0.66	-0.34

Source: Morten Ambye-Jensen

ready to pave the way for market introduction

Supported by public funding and Arla, Danish Crown, DLG & DLF

GREEN BIOREFINERIES CAN DISRUPT LOCKED-IN AGRICUL-TURAL SYSTEMS BY CREATING NEW MARKETS AND ENSURE

